Proses panas bumi sehingga dapat menghasilkan listrik

Proses panas bumi sehingga dapat menghasilkan listrik

Minggu, 23 Mei 2010 - Dibaca 22402 kali

JAKARTA. Dalam artikel sebelumnya telah dijelaskan bagaimana proses terjadinya panas bumi yang selanjutnya dapat dimanfaatkan sebagai sumber energi yang ramah lingkungan. Dalam ulasan selanjutnya dibawah ini akan dijelaskan beberapa teknologi pembangkit panas bumi berbasis panas bumi.Pembangkit yang digunakan untuk meng-konversi fluida geothermal menjadi tenaga listrik secara umum mempunyai komponen yang sama dengan power plants lain yang bukan berbasis geothermal, yaitu terdiri dari generator, turbin sebagai penggerak generator, heat exchanger, chiller, pompa, dan sebagainya. Saat ini terdapat tiga macam teknologi pembangkit panas bumi (geothermal power plants) yang dapat mengkonversi panas bumi menjadi sumber daya listrik, yaitu dry steam, flash steam, dan binary cycle. Ketiga macam teknologi ini pada dasarnya digunakan pada kondisi yang berbeda-beda.1. Dry Steam Power PlantsPembangkit tipe ini adalah yang pertama kali ada. Pada tipe ini uap panas (steam) langsung diarahkan ke turbin dan mengaktifkan generator untuk bekerja menghasilkan listrik. Sisa panas yang datang dari production well dialirkan kembali ke dalam reservoir melalui injection well. Pembangkit tipe tertua ini per-tama kali digunakan di Lardarello, Italia, pada 1904 dimana saat ini masih berfungsi dengan baik. Di Amerika Serikat pun dry steam power masih digunakan seperti yang ada di Geysers, California Utara.2. Flash Steam Power PlantsPanas bumi yang berupa fluida misalnya air panas alam (hot spring) di atas suhu 1750 C dapat digunakan sebagai sumber pembangkit Flash Steam Power Plants. Fluida panas tersebut dialir-kan kedalam tangki flash yang tekanannya lebih rendah sehingga terjadi uap panas secara cepat. Uap panas yang disebut dengan flash inilah yang menggerakkan turbin untuk meng-aktifkan generator yang kemudian menghasil-kan listrik. Sisa panas yang tidak terpakai ma-suk kembali ke reservoir melalui injection well. Contoh dari Flash Steam Power Plants adalah Cal-Energy Navy I flash geothermal power plants di Coso Geothermal field, California, USA.3. Binary Cycle Power Plants (BCPP)BCPP menggunakan teknologi yang berbeda dengan kedua teknologi sebelumnya yaitu dry steam dan flash steam. Pada BCPP air panas atau uap panas yang berasal dari sumur produksi (production well) tidak pernah menyentuh turbin. Air panas bumi digunakan untuk memanaskan apa yang disebut dengan working fluid pada heat exchanger. Working fluid kemudian menjadi panas dan menghasilkan uap berupa flash. Uap yang dihasilkan di heat exchanger tadi lalu dialirkan untuk memutar turbin dan selanjutnya menggerakkan generator untuk menghasilkan sumber daya listrik. Uap panas yang dihasilkan di heat exchanger inilah yang disebut sebagai secondary (binary) fluid. Binary Cycle Power Plants ini sebetulnya merupakan sistem tertutup. Jadi tidak ada yang dilepas ke atmosfer.Keunggulan dari BCPP ialah dapat dioperasikan pada suhu rendah yaitu 90-1750C. Contoh penerapan teknologi tipe BCPP ini ada di Mammoth Pacific Binary Geo-thermal Power Plants di Casa Diablo geothermal field, USA. Diperkirakan pembangkit listrik panas bumi BCPP akan semakin banyak digunakan dimasa yang akan datang. Khusus untuk PLTP binary cycle, BPPT telah merancang-bangun dan menguji prototype PLTP Binary Cycle kapasitas 2KW dengan menggunakan fluida hidrokarbon sebagai f1uida kerjanya. Selain itu BPPT telah merencanakan kegiatan Pengembangan PLTP Skala Kecil 2010-2014 yang meliputi 2 kegiatan utama, yaitu, pengembangan PLTP Binary Cycle dengan kapasitas 1 MW (target 2014) melalui tahapan prototipe 2KW (2008) dan pilot project 100KW (2012), serta pengembangan PLTP teknologi condensing turbine dengan kapasitas 2-5 MW (2011 dan 2013). (SF)

Bagikan Ini!

For an updated analysis we refer you to our Energy Research Report

Di samping menghasilkan listrik, energi geotermal juga bisa digunakan untuk pompa pemanas, alat mandi, pemanas ruangan, rumah kaca untuk tanaman, dan proses-proses industri.

Tabel di bawah mendaftarkan lima negara yang paling banyak menghasilkan listrik menggunakan energi geothermal:

  1. Amerika Serikat       3,092 MWe
  2. Filipina       1,904 MWe
  3. Indonesia       1,197 MWe
  4. Meksiko         958 MWe
  5. Italia         843 MWe

MWe = megawatt electrical
Sumber: International Geothermal Association

Di beberapa tahun terakhir, pasar untuk tenaga geothermal meningkat tajam, terutama di pasar-pasar negara berkembang karena - akibat pertumbuhan ekonomi - semakin banyak komunitas-komunitas di pedesaan berpenghasilan rendah yang mendapat akses ke jaringan listrik. Banyak pemerintah juga makin meningkatkan fokus untuk mengurangi kebergantungan pada bahan bakar fosil yang mahal dan tidak ramah lingkungan.

Indonesia adalah salah satu dari negara-negara berkembang ini yang meghadapi perningkatan permintaan listrik sebanyak 10% setiap tahunnya (terutama di pulau-pulau di luar Jawa) dan karena itu negara ini membutuhkan tambahan kapasitas untuk menghasilkan listrik sekitar 6 Giga Watt per tahun. Rasio kelistrikan Indonesia - yaitu persentase rumah tangga Indonesia yang terhubung dengan jaringan listrik - sekitar 80,38% pada akhir 2013, mengimplikasikan bahwa masih ada sekitar 50 juta penduduk Indonesia yang tidak memiliki akses listrik. Pemerintah Indonesia memiliki harapan-harapan tinggi untuk energi geothermal. Indonesia memiliki cadangan-cadangan geothermal terbesar di dunia, karena itu Pemerintah bertujuan meningkatkan peran energi geothermal sebagai penghasil listrik. Karena permintaan energi meningkat tajam di Indonesia (negara dengan ekonomi terbesar di Asia Tenggara) - karena pertambahan penduduk dikombinasikan dengan ekspansi struktural ekonomi menyebabkan semakin bertambahnya jumlah kalangan menengah dan juga pertumbuhan industrialisasi dan investasi-investasi baru - Pemerintah, baru-baru ini, telah melakukan usaha-usaha untuk mempermudah investasi dalam ekspansi geothermal setelah selama ini cenderung mengabaikan sektor ini. Di masa lalu keadaannya terbalik, pemerintah bergantung pada batu bara, gas bumi, dan minyak mentah untuk menjadi bahan bakar pembangkit-pembangkit listrik. Sejalan dengan masa lalu ini, pemerintah juga telah mengabaikan potensi sumber-sumber energi terbarukan yang lain (seperti energi hidroelektrik, tenaga surya, biofuel dan biomass). Pihak swasta juga kurang berminat untuk berinvesatasi di sumber-sumber energi terbarukan di Indonesia karena iklim investasi negara ini yang rumit (birokrasi yang buruk, korupsi, kurangnya infrastruktur yang layak, dan kurangnya kepastian hukum). Terlebih lagi, berlimpahnya batu bara yang murah di Indonesia membuat investasi dalam energi yang terbarukan kurang menarik.

Energi Geothermal di Indonesia

Produksi dan Konsumsi Energi Geothermal

Sekitar 40% cadangan energi geothermal dunia terletak di bawah tanah Indonesia, maka negara ini diperkirakan memiliki cadangan-cadangan energi geotermal terbesar di dunia dan karena itu memiliki potensi tinggi untuk sumber energi terbarukan. Namun, sebagian besar dari potensi ini belum digunakan. Saat ini, Indonesia hanya menggunakan 4-5% dari kapasitas geothermalnya.

Faktor utama yang menghalangi investasi pengembangan geothermal di Indonesia adalah hukum di Indonesia sendiri. Dulu aktivitas geothermal didefinisikan sebagai aktivitas pertambangan (Undang-Undang No. 27/2003) yang mengimplikasikan bahwa hal ini dilarang untuk dilaksanakan di wilayah hutan lindung dan area konservasi (Undang-Undang No. 41/1999), walaupun faktanya aktivitas-aktivitas tambang geothermal hanya memberikan dampak kecil pada lingkungan (dibandingkan aktivitas-aktivitas pertambangan yang lain). Namun, sekitar 80% dari cadangan geothermal Indonesia terletak di hutan lindung dan area konservasi, oleh karena itu mustahil untuk memanfaatkan potensi ini. Pada Agustus 2014, waktu periode kedua administrasi Presiden Susilo Bambang Yudhoyono hampir selesai, Dewan Perwakilan Rakyat (DPR) Indonesia mengesahkan Undang-Undang Geothermal No. 21/2014 (menggantikan Undang-Undang No. 27/2003) yang memisahkan geotermal dari aktivitas-aktivitas pertambangan yang lain dan karena itu membuka jalan untuk eksplorasi geothermal di wilayah hutan lindung dan area konservasi. Pengesahan Undang-Undang ini adalah gebrakan yang penting. Namun, pada saat tulisan ini dibuat (Desember 2014), Undang-Undang baru ini masih perlu diatur pelaksanaannya dengan peraturan-peraturan kementerian yang lain.

Pemerintah Indonesia juga telah melaksanakan berbagai upaya lain untuk membuat investasi energi panas bumi lebih menarik. Geothermal Fund Facility (GFF) menyediakan dukungan untuk memitigasi resiko-resiko dan menyediakan informasi mengenai biaya pengembangan awal geothermal yang relatif tinggi.

Halangan lain di Indonesia adalah tarif listrik yang tidak kompetitif. Melalui subsidi pemerintah, tarif listrik menjadi murah. Selain itu, Perusahaan Listrik Negara (PLN) memiliki monopoli distribusi listrik di Indonesia dan karena itu energi listrik dari produsen-produsen independen harus dijual kepada PLN. Namun, di Juni 2014, Pemerintah Indonesia mengumumkan akan membuat harga pembelian (dibayar oleh PLN) menjadi lebih menarik melalui kebijakan tarif feed-in yang baru.

Terakhir, eksplorasi geothermal di Indonesia dihalangi oleh keadaan infrastruktur yang buruk di wilayah-wilayah terpencil, perlawanan masyarakat lokal pada proyek-proyek ini, dan juga birokrasi yang buruk (prosedur perizinan yang panjang dan mahal yang melibatkan pemerintah pusat provinsi, dan kabupaten).

Cadangan energi panas bumi yang terbesar terletak di wilayah barat Indonesia dimana ada permintaan energi yang paling tinggi: Sumatra, Jawa dan Bali. Sulawesi Utara adalah provinsi yang paling maju dalam penggunaan geotermal untuk energi listrik: sekitar 40% dari pasokan listriknya didapat dari energi geothermal.

Proses panas bumi sehingga dapat menghasilkan listrik

Proyek Pembangkit Listrik Tenaga Geothermal Sarulla di Sumatra Utara

Diperlukan waktu lebih dari dua dekade untuk memulai pembangunan Pembangkit Listrik Tenaga Geothermal Sarulla di Sumatra Utara (Kabupaten Tapanuli Utara) yang didesain untuk menjadi pembangkit listrik tenaga panas bumi terbesar di dunia dengan total kapasitas bersih 330 Mega Watt yang terjamin untuk periode 30 tahun (cukup untuk menyediakan listrik pada 330.000 rumah). Setelah tertunda karena birokrasi yang buruk dan kurangnya sumber pembiayaan, proses pembangunan proyek ini (yang membutuhkan investasi 1,6 milyar dollar AS) akhirnya mulai dilaksanakan pada Juni 2014. Pembangkit listrik ini direncanakan untuk mulai beroperasi pada 2016 dan akan beroperasi penuh di 2018. Total biaya 1,17 milyar dollar AS dikumpulkan melalui pinjaman-pinjaman dari enam peminjam komersil (Bank of Tokyo-Mitsubishi UFJ Ltd, ING Bank NV, Societe Generale, Sumitomo Mitsui Banking Corportation, Mizuho Bank Ltd dan National Australia Bank), serta Asian Development Bank (ADB) dan Japan Bank for International Cooperation (JBIC). Proyek Sarulla dipimpin oleh konsorsium yang terdiri dari Medco Power Indonesia (37.5%), Itochu Corporation (25%), Kyushu Electric Power Company (25%) dan Ormat International (12.5%).

Pembangkit Listrik Sarulla akan menggantikan Pembangkit Listrik Panas Bumi Wayang Windu (milik Star Energy) sebagai pembangkit listrik tenaga geotermal terbesar di Indonesia. Pembangkit Listrik Wayang Windu, terletak di wilayah selatan Bandung (Jawa Barat), memiliki kapasitas total 227 Mega Watt.

Pengembangan Pembangkit Listrik Panas Bumi Sarulla adalah langkah penting untuk meningkatkan peran sumber energi terbarukan dalam memenuhi kebutuhan listrik negara, untuk menggunakan potensi tenaga geothermal yang luar biasa besar, dan untuk memenuhi permintaan energi yang terus meningkat dari negara dengan ekonomi terbesar di Asia Tenggara.

Updated pada 1 Oktober 2015