Jenis jenis sel yang dapat digunakan sebagai donor gen dalam teknologi tersebut adalah

Perkawinan merupakan cara yang dilakukan manusia untuk berkembang biak. Sel ovum dari ibu dan sperma dari ayah bertemu dan kemudian berkembang menjadi individu baru. Selain manusia, sebagian besar hewan juga melakukan perkawinan untuk mempertahankan populasinya.

Berbeda dengan hewan ataupun manusia, jasad renik (mikroorganisme) umumnya tidak melakukan perkawinan untuk berkembang biak. Mikroorganisme, seperti bakteri, melakukan pembelahan sel untuk memperbanyak jumlah populasinya. Proses perkawinan merupakan peristiwa yang jarang terjadi dalam kehidupan bakteri, tetapi bukan berarti bakteri tidak mampu melakukan proses perkawinan. Bakteri tidak memerlukan perbedaan kelamin dalam melakukan perkawinan karena memang bakteri tidak mengenal adanya perbedaan jenis kelamin.

Salah satu proses perkawinan antarbakteri adalah proses konjugasi di mana terjadi perpindahan materi genetik (DNA) bakteri donor ke bakteri resipien (penerima). Umumnya, proses ini bisa terjadi pada bakteri-bakteri yang memiliki kekerabatan yang dekat. Bakteri donor harus memiliki pili seks, yakni organel (bagian dari sel bakteri) yang bisa digunakan sebagai selang suntik ke bakteri resipien.

Selain itu, bakteri penerima harus bersifat kompeten atau mau menerima donor materi genetik dari bakteri lain. Kondisi inilah yang menyebabkan kecilnya kemungkinan terjadinya perkawinan antarbakteri secara alamiah.

Prinsip konjugasi telah memberikan inspirasi bagi ilmuwan dalam memperbaiki sifat genetis bakteri (rekayasa genetika). Kloning bakteri merupakan cara yang umum dilakukan untuk memperbaiki sifat bakteri.

Secara sederhana, perbaikan sifat bakteri dengan proses kloning dapat digambarkan sebagai berikut: bakteri A memiliki kemampuan dalam memakan limbah pertanian, tetapi tidak memiliki kemampuan dalam menghasilkan etanol (bahan bakar nabati). Kita menginginkan bakteri tersebut dapat mengubah limbah menjadi etanol.

Etanol dalam sel bakteri

Pertama-tama, kita harus mengetahui mekanisme produksi etanol di dalam sel bakteri. Setelah diketahui gen yang berperan dalam produksi etanol, kita dapat memasukkan gen tersebut ke dalam bakteri A (bakteri target). Bakteri A yang telah mengandung gen tersebut diharapkan akan tetap memiliki kemampuan mengonsumsi limbah dan sebagai tambahan, bakteri tersebut juga mampu memproduksi etanol.

Dalam praktiknya, proses kloning tidak mudah untuk dilakukan. Proses kloning memerlukan teknologi yang memadai dalam penerapannya. Kloning memerlukan pengetahuan lengkap mengenai jalur metabolisme dari bakteri target. Kadang kala di dalam bakteri target terdapat beberapa jalur metabolisme yang menghambat ekspresi (hasil kerja) dari gen yang dimasukkan.

Contohnya, meski telah dimasukkan gen yang bertanggung jawab dalam produksi etanol, tetapi bakteri A tetap tidak mampu menghasilkan etanol karena dalam bakteri A terdapat jalur metabolisme yang memblokir jalur produksi etanol.

Oleh karena itu, bakteri yang bisa dijadikan sebagai bakteri target terbatas hanya untuk bakteri yang telah selesai dikarakterisasi (diteliti sifat genetiknya), seperti Escherichia coli.

Genome shuffling

Baru-baru ini, beberapa penelitian dilaporkan telah berhasil memperbaiki sifat bakteri dengan teknik perkawinan langsung antarmikroba. Teknik ini disebut sebagai genome shuffling.

Penelitian Zhang et al. (2002) dilaporkan berhasil menggunakan teknik tersebut untuk meningkatkan produksi tilosin (antibiotik) pada Streptomyces fradiae begitu pula penelitian yang dilakukan Hida et al. (2007) telah berhasil meningkatkan produksi asam hidroksisitrat (bahan baku obat).

Teknik tersebut juga berhasil menggabungkan sifat 2 bakteri yang berbeda sehingga terbentuk bakteri baru yang memiliki kemampuan dalam menfermentasi limbah pati-patian menjadi asam laktat (bahan pengawet alami) (John et al. 2008).

Prinsip dari perkawinan langsung antarbakteri (genome shuffling) adalah penggabungan dua/lebih sel bakteri yang memiliki sifat unggul sehingga dihasilkan bakteri baru yang memiliki sifat unggul dari kedua induknya. Proses ini bisa terjadi secara alami, tetapi kemungkinannya sangat kecil. Beberapa kendala yang menghambat terjadinya perkawinan antarbakteri telah berhasil diatasi oleh para ilmuwan. Beberapa penelitian telah menemukan kondisi optimal yang memungkinkan perkawinan antarbakteri menjadi lebih mudah dilakukan.

Perkawinan antarbakteri merupakan hal yang tidak lazim karena setiap bakteri memiliki bagian pelindung berupa dinding sel. Adanya dinding sel ini akan mencegah materi/benda asing masuk ke dalam sel. Tentu saja, hal ini sekaligus menyebabkan proses perkawinan antarbakteri sulit terjadi.

Dalam teknik genome shuffling, dinding sel bakteri dihilangkan dengan menggunakan enzim khusus, seperti lisozim dan mutanolisin. Sel-sel bakteri yang telah kehilangan dinding selnya kemudian dicampurkan sehingga antarsel akan saling bergabung (fusi) membentuk sel baru. Hasil penggabungan antarsel ini masih belum memiliki dinding sel.

Sel ini harus ditempatkan pada lingkungan yang memiliki tekanan osmotik yang sesuai karena tanpa dinding sel, suatu sel akan sangat rawan pecah. Dinding sel harus segera dibentuk kembali supaya bakteri baru tersebut mampu hidup secara normal.

Proses pembentukan dinding sel dapat dilakukan dengan cara menumbuhkan bakteri hasil fusi tersebut di media pertumbuhan yang sesuai.

Perkawinan antarbakteri terjadi secara acak sehingga sifat dari bakteri hasil fusi ini memiliki kemungkinan sifat yang beragam. Oleh karena itu, tahap selanjutnya dari genome shuffling adalah menyeleksi bakteri hasil fusi menggunakan metode seleksi yang spesifik, seperti teknik PCR (polymerase chain reaction) untuk memilih bakteri dengan sifat yang sesuai dengan yang kita inginkan.

Perkawinan antarbakteri (genome shuffling) merupakan suatu teknik yang cukup aplikatif untuk diterapkan di Indonesia. Teknik ini tidak memerlukan peralatan yang canggih dalam pelaksanaannya. Teknik ini relatif lebih efisien dan murah dibandingkan dengan teknik rekayasa genetika lainnya.

Hampir semua bakteri dapat direkayasa menggunakan teknik ini sehingga teknik ini dapat mempermudah kita dalam memperbaiki sifat genetis bakteri lokal Indonesia. Mengingat Indonesia memiliki biodiversitas yang luar biasa kaya, teknik ini memberikan solusi bagi kita untuk mengeksplorasi kekayaan alam Indonesia terutama mikroorganisme dengan biaya yang lebih terjangkau.

RETNO WAHYU NURHAYATI, Magang di Laboratorium Carbohydrate and Bioengineering Research Group Puslit Bioteknologi LIPI Kompas, 5 April 2010

Jenis jenis sel yang dapat digunakan sebagai donor gen dalam teknologi tersebut adalah

BMC – Bioteknologi adalah suatu teknik modern untuk mengubah bahan mentah melalui transformasi biologi sehingga menjadi produk yang berguna. Supriatna (1992 ) memberi batasan tentang arti bioteknologi secara lebih lengkap, yakni: pemanfaatan prinsip–prinsip ilmiah dan kerekayasaan terhadap organisme, sistem atau proses biologis untuk menghasilkan dan atau meningkatkan potensi organisme maupun menghasilkan produk dan jasa bagi kepentingan hidup manusia.

Bioteknologi (1) : Konsep dasar dan perkembangan

Bioteknologi di masa lampau (konvensional)

Bioteknologi sederhana sudah dikenal oleh manusia sejak ribuan tahun yang lalu.

  • 8000 SM Pengumpulan benih untuk ditanam kembali. Bukti bahwa bangsa Babilonia, Mesir, dan Romawi melakukan praktik pengembangbiakan selektif (seleksi artifisal) untuk meningkatkan kualitas ternak.
  • 6000 SM Pembuatan bir, fermentasi anggur, membuat roti, membuat tempe dengan bantuan ragi
  • 4000 SM Bangsa Tionghoa membuat yogurt dan keju dengan bakteri asam laktat
  • 1500 Pengumpulan tumbuhan di seluruh dunia
  • 1665 Penemuan sel oleh Robert Hooke(Inggris) melalui mikroskop.
  • 1800 Nikolai I. Vavilov menciptakan penelitian komprehensif tentang pengembangbiakan hewan
  • 1880 Mikroorganisme ditemukan
  • 1856 Gregor Mendel mengawali genetika tumbuhan rekombinan
  • 1865 Gregor Mendel menemukan hukum hukum dalam penyampaian sifat induk ke turunannya.
  • 1919 Karl Ereky, insinyur Hongaria, pertama menggunakan kata bioteknologi
  • 1970 Peneliti di AS berhasil menemukan enzim pembatas yang digunakan untuk memotong gen gen
  • 1975 Metode produksi antibodi monoklonal dikembangkan oleh Kohler dan Milstein
  • 1978 Para peneliti di AS berhasil membuat insulin dengan menggunakan bakteri yang terdapat pada usus besar
  • 1980 Bioteknologi modern dicirikan oleh teknologi DNA rekombinan. Model prokariot-nya, E. coli, digunakan untuk memproduksi insulin dan obat lain, dalam bentuk manusia. Sekitar 5{f96eda6f8618a63bcc95c2e2e67272e5834b316e5a9a9c3aeb9c545dc6b63cdc} pengidap diabetes alergi terhadap insulin hewan yang sebelumnya tersedia.
  • 1992 FDA menyetujui makanan GM pertama dari Calgene: tomat “flavor saver”
  • 2000 Perampungan Human Genome Project

Contoh produk bioteknologi konvensional, misalnya:

  • di bidang pangan ada pembuatan bir, roti, maupun keju yang sudah dikenal sejak abad ke-19,
  • pemuliaan tanaman untuk menghasilkan varietas-varietas baru di bidang pertanian, serta pemuliaan dan reproduksi hewan.
  • di bidang medis, antara lain dengan penemuan vaksin, antibiotik, dan insulin walaupun masih dalam jumlah yang terbatas akibat proses fermentasi yang tidak sempurna. Perubahan signifikan terjadi setelah penemuan bioreaktoroleh Louis Pasteur. Dengan alat ini, produksi antibiotik maupun vaksin dapat dilakukan secara massal.

Bioteknologi modern

Sekarang bioteknologi berkembang sangat pesat, terutama di negara negara maju. Kemajuan ini ditandai dengan ditemukannya berbagai macam teknologi semisal:

  • Rekayasa genetika, kultur jaringan, DNA rekombinan, pengembangbiakan sel induk, kloning, dan lain-lain. Teknologi ini memungkinkan kita untuk memperoleh penyembuhan penyakit-penyakit genetik maupun kronis yang belum dapat disembuhkan, seperti kanker ataupun AIDS.
  • Penelitian di bidang pengembangan sel induk juga memungkinkan para penderita stroke ataupun penyakit lain yang mengakibatkan kehilangan atau kerusakan pada jaringan tubuh dapat sembuh seperti sediakala.
  • Di bidang pangan, dengan menggunakan teknologi rekayasa genetika, kultur jaringan dan DNA rekombinan, dapat dihasilkan tanaman dengan sifat dan produk unggul karena mengandung zat gizi yang lebih jika dibandingkan tanaman biasa, serta juga lebih tahan terhadap hama maupun tekanan lingkungan.
  • Penerapan bioteknologi di saat ini juga dapat dijumpai pada pelestarian lingkungan hidup dari polusi. Misalnya saja penguraian minyak bumi yang tertumpah ke laut oleh bakteri, dan penguraian zat-zat yang bersifat toksik (racun) di sungai atau laut dengan menggunakan bakteri jenis baru.

Berikut ini adalah daftar kemajuan bidang bioteknologi yang telah diaplikasikan. Mayoritas didominasi oleh bidang peternakan, perikanan, dan kesehatan.

Bioteknologi dalam Bidang Peternakan dan Perikanan

Penggunaan bioteknologi guna meningkatkan produksi peternakan meliputi :

  • teknologi produksi, seperti inseminasi buatan, embrio transfer, kriopreservasi embrio, fertilisasi in vitro, sexing sperma maupun embrio, cloning dan spliting.
  • rekayasa genetika, seperti genome maps, masker asisted selection, transgenik, identifikasi genetik, konservasi molekuler,
  • peningkatan efisiensi dan kualitas pakan, seperti manipulasi mikroba rumen,
  • bioteknologi yang berkaitan dengan bidang veteriner (Gordon, 1994; Niemann dan Kues, 2000).

Teknologi reproduksi yang telah banyak dikembangkan adalah:

  • transfer embrio berupa teknik Multiple Ovulation and Embrio Transfer (MOET). Teknik ini telah diaplikasikan secara luas di Eropa, Jepang, Amerika dan Australia dalam dua dasawarsa terakhir untuk menghasilkan anak (embrio) yang banyak dalam satu kali siklus reproduksi.
  • cloning telah dimulai sejak 1980-an pada domba. Saat ini pembelahan embrio secara fisik (embryo spliting) mampu menghasilkan kembar identik pada domba, sapi, babi dan kuda.
  • produksi embrio secara in vitro: teknologi In vitro Maturation (IVM), In Vitro Fertilisation (IVF), In Vitro Culture (IVC), telah berkembang dengan pesat. Kelinci, mencit, manusia, sapi, babi dan domba telah berhasil dilahirkan melalui fertilisasi in vitro (Hafes, 1993).

Di Indonesia, transfer embrio mulai dilakukan pada tahun 1987. Dengan teknik ini seekor sapi betina, mampu menghasilkan 20-30 ekor anak sapi (pedet) pertahun. Penelitian terakhir membuktikan bahwa, menciptakan jenis ternak unggul sudah bukan masalah lagi. Dengan teknologi transgenik, yakni dengan jalan mengisolasi gen unggul, memanipulasi, dan kemudian memindahkan gen tersebut dari satu organisme ke organisme lain, maka ternak unggul yang diinginkan dapat diperoleh.

Babi transgenik, di Princeton Amerika Serikat, kini sudah berhasil memproduksi hemoglobin manusia sebanyak 10 – 15 {f96eda6f8618a63bcc95c2e2e67272e5834b316e5a9a9c3aeb9c545dc6b63cdc} dari total hemoglobin manusia, bahkan laporan terakhir mencatat adanya peningkatan persentasi hemoglobin manusia yang dapat dihasilkan oleh babi transgenik ini.

Bioteknologi dalam Bidang Kesehatan dan Pengobatan

Suatu terobosan baru telah dilakukan di Colorado AS. Pasangan Jack dan Lisa melakukan program bayi tabung bukan semata-mata untuk mendapatkan turunan, tetapi karena perlu donor bagi putrinya Molly yang berusia 6 tahun dan menderita penyakit fanconi anemia. Fanconi anemia adalah suatu penyakit yang disebabkan oleh tidak berfungsinya sumsum tulang belakang sebagai penghasil darah. Jika dibiarkan akan menyebabkan penyakit leukemia. Satu-satunya pengobatan adalah melakukan pencakokkan sumsum tulang dari saudara sekandung, tetapi masalahnya, Molly adalah anak tunggal. Teknologi bayi tabung diterapkan untuk mendapatkan anak yang bebas dari penyakit fanconi anemia. Melalui teknik “Pra Implantasi genetik diagnosis” dapat dideteksi embrio-embrio yang membawa gen fanconi. Dari 15 embrio yang dihasilkan, ternyata hanya 1 embrio yang terbebas dari gen fanconi. Embrio ini kemudian ditransfer ke rahim Lisa dan 14 embrio lainnya dimusnahkan. Bayi tabung ini lahir 29 Agustus 2000 yang lalu, dan beberapa jam setelah lahir, diambil sampel darah dari umbilical cord (pembuluh darah yang menghubungkan bayi dengan placenta) untuk ditransfer ke darah Molly. Sel-sel dalam darah tersebut diharapkan akan merangsang sumsum tulang belakang Molly untuk memproduksi darah.

Kontroversi

Dalam perkembangannya, kemajuan di bidang bioteknologi tak lepas dari berbagai kontroversi. Sebagai contoh:

  • teknologi kloning dan rekayasa genetika terhadap tanaman pangan mendapat kecaman dari bermacam-macam golongan terutama kaum konservatif religius
  • pro dan kontra penggunaan tanaman transgenik, salah satu contohnya adalah kapas transgenik. Pihak yang pro, terutama para petinggi dan wakil petani yang tahu betul hasil uji coba di lapangan memandang kapas transgenik sebagai mimpi yang dapat membuat kenyataan, sedangkan Pihak yang kontra, sangat ekstrim mengungkapkan berbagai bahaya hipotetik tanaman transgenik (Tajudin, 2001).
  • selain kapas, Setyarini (2000) memaparkan tentang kontroversi penggunaan tanaman jagung yang telah direkayasa secara genetik untuk pakan unggas. Kekhawatiran yang muncul adalah produk akhir unggas Indonesia akan mengandung genetically modified organism ( GMO ).
  • masalah lain yang menjadi kekhawatiran berbagai pihak adalah potensinya dalam mengganggu keseimbangan lingkungan antara lain serbuk sari jagung dialam bebas dapat mengawini gulma-gulma liar, sehingga menghasilkan gulma unggul yang sulit dibasmi. Sebaliknya, kelompok masyarakat yang pro mengatakan bahwa dengan jagung transgenik selain akan mempercepat swa sembada jagung, manfaat lain adalah jagung yang dihasilkan mempunyai kualitas yang hebat, kebal terhadap serangan hama sehingga petani tidak perlu menyemprot pestisida.

Bagaimana cara kita menyikapinya? Satu-satunya jalan adalah dengan melakukan beberapa tahapan pengujian, studi kelayakan, serta sistem pengawasan yang ketat oleh instansi yang berwenang. Disini, pihak peneliti memegang peranan penting dalam mengungkap dan membuktikan atau menyanggah berbagai kekhawatiran yang timbul (www.biologimediacenter.com)